Suspended Solids Sensor (Sludge Concentration)

User Manual

Model: MLSS3 Version 1.0

CONTENTS

Chapter 1 Specifications	1
Chapter 2 Product Introduction	2
2.1 Product information	2
2.2 Safety information	3
Chapter 3 Installation	4
3.1 Sensor installation	4
3.1.1 Quick Release pool side fixed installation	4
3.1.2 Classic poolside Fixed installation	5
3.1.3 Railing fixed installation	6
3.2 Sensor connection	7
Chapter 4 Interface and Operation	7
4.1 User Interface	7
4.2 Parameter setting	7
Chapter 5 Sensor Calibration	8
5.1 Factor Calibration	9
5.2 Four-point calibration	11
5.3 Curve Calibration	18
Chapter 6 Communication Protocol	24
Chapter 7 Maintenance	30
7.1 Sensor cleaning	
7.2 Sensor damage inspection	31
7.3 Sensor wiper replacement	31
Chapter 8 Special Instructions	31

Chapter 1 Specifications

Specification	Details
Principle	Infrared Scattering Principle
Measuring range	0.01-20000mg/L, 0.01-45000mg/L, 0.01-120000mg/L
Accuracy	Less than ±5% of measured value (depending on
	sludge homogeneity)
Resolution	0.01g/L
Working pressure	≤4bar
Calibration method	Multi-point calibration, factor calibration
Sensor main material	Body: SUS316L/titanium alloy/PVC; upper and lower
	covers: POM/PVC, cable: PURPUR
Installation	Horizontal installation, special 90° installation
Power supply	12VDC
Protocol	MODBUS RS485
Operating temperature	0 to 50°C (no freezing)
Weight	1.5KG
Degree of protection	IP68
Cable length	Standard 5 m cable, extendable to 100m

 Table 1 Suspended solids (sludge concentration) sensor technical specifications

Note: Product specifications are subject to change without notice.

Chapter 2 Product Introduction

2.1 Product information

The suspended solids/sludge concentration sensor is based on the combined infrared absorption and scattering light method. The infrared light emitted by the light source is scattered by the suspended particles in the sample, and finally converted into an electrical signal by the photodetector, and the suspension of the sample is obtained after analog and digital signal processing. Matter/sludge concentration value.

This product is widely used in the online monitoring of suspended solids/sludge concentration in various processes of sewage treatment plants; the online monitoring of suspended solids/sludge concentration in various industrial production process water and wastewater treatment processes. The sensor dimensions are shown in Figure 1.

SUS316L/Titanium Alloy Material Dimensions:

Without automatic cleaning device:

With automatic cleaning device:

PVC material appearance size:

Without automatic cleaning device:

With automatic cleaning device:

Figure 1 Dimensions of suspended matter (sludge concentration) sensor

2.2 Safety information

Please read this manual completely before unpacking, installing or using this equipment. Otherwise, personal injury to the operator or damage to the equipment may result.

Warning label

Please read all labels and imprints attached to the instrument, and follow the instructions of these safety labels, otherwise personal injury or instrument damage may result.

When this symbol appears on the instrument, it indicates operating or safety information in the reference manual.

This symbol indicates that there is a risk of electric shock or death from electrocution. Please read this manual in its entirety. In particular, pay attention to some precautions,

warnings, etc. Make sure that the protection provided by this equipment is not compromised.

Chapter 3 Installation

3.1 Sensor installation

3.1.1 Quick Release pool side fixed installation

3.1.2 Classic poolside Fixed installation

3.1.3 Railing fixed installation

3.2 Sensor connection

The sensor is properly connected with the following core definitions:

Core No.	1	2	3	4	5
Sensor wire	Brown	Black	Blue	White	Yellow+Green
Signal	+12VDC	AGND	RS485 A	RS485 B	Ground wire

Chapter 4 Interface and Operation

4.1 User Interface

The sensor is connected to the computer using RS485 to USB, and then used Modbus Poll for connection operation.

Note: Modbus Poll software is general software and can be downloaded online..

4.2 Parameter setting

1、 Click Setup on the menu bar, select Read/Write Definition, and then set the parameters (the slave address used for the first time is based on the slave label), enter "30" in the Quantity of the pop-up dialog box, and click OK.

Read/Writ	e Definition		×
Slave ID:	1		ОК
Function:	03 Read Holding Re	gisters (4x) 🗸 🗸	Cancel
Address:	0 Protoco	l address. E.g.	40011 -> 10
Quantity:	30		
Scan Rate:	1000 [ms]		Apply
Disable			
Read/	Write Disabled		
🗌 Disabl	e on error		Read/Write Once
View			
Rows			
• 10	○20 ○50 ○	100 🔘 Fit to	Quantity
Hide A	Alias Columns	PLC Addre	esses (Base 1)
Addre	ss in Cell	Enron/Dar	niel Mode

Note: When the address of the slave is changed, it will communicate with the new address, and the address of the slave to be connected again next time is also the address changed recently.

2 Click Connection on the menu bar, select the first line of Connection setup in the drop-down menu to set (the baud rate for the first time is based on the slave label), and click OK.

onnection Setup		
Connection		ОК
Serial Port	~	
Serial Settings		Cancel
Prolific USB-to-Serial C	Comm Port (COM4) 🛛 🗸 🗸	Mode
9600 Baud 🗸 🗸		
8 Data bits 🛛 🗸		Response Timeout
None Parity \sim		Delay Between Polls
1 Stop Bit 🛛 🗸	Advanced	1000 [ms]
Remote Modbus Server		
IP Address or Node Na	me	
127.0.0.1		~
Server Port	Connect Timeout	IPv4
502	3000 [ms]	O IPv6

Note: Port is set according to the port number of the connection.

Tip: If the sensor has been connected according to the instructions, but Timeout Error appears in the software Display status, indicating that it has not been connected, remove and replace the USB connection port or check the USB to RS485 converter, etc., and repeat the above operations until the sensor is connected successfully.

Chapter 5 Sensor Calibration

There are two calibration methods for the sensor, but only one is effective. Which calibration mode to use is selected according to the actual needs of the site. For the selection method, see the communication protocol section.

The specific calibration can be carried out according to the following method steps.

Note: Curve calibration is used as basic calibration and coexists with the other two calibration modes.

5.1 Factor Calibration

Suspended solids (sludge concentration) calibration requires the use of suspended solids standard solution. When calibrating, ensure that the probe lens is 15cm away from the bottom of the calibration cup. When calibrating, ensure that there are no air bubbles at the front of the lens. It is recommended that the calibration cup be protected from light during calibration. Specific steps are as follows:

If there is a large deviation between the measured value and the standard solution value, the slope of the calibration curve needs to be corrected by a factor

- 1. Connect the sensor to the Modbus software;
- 2. Set the relevant parameters and clean the sensor;
- 3. Select "06" in the menu bar, and in the dialog box that appears, enter "27" for Address and"1" for Value, and then click "Send", as shown in the figure below;

Write Singl	e <mark>Registe</mark> r	×
Slave ID:	1	<u>S</u> end
Address:	27	Cancel
Value:	1	
Result Response	ok alog on ''Respons	e ok''
Use Functi	on e single register	
0 16: Writ	e multiple register:	5

4. Select "16" in the menu bar, enter "06" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter "1" for Value, Click "OK", and then click "Send", as shown in the figure below;

16: Write Multiple Registers	×
Slave ID: 1	006 = 1 <u>S</u> end
Address: 06	<u>C</u> ancel
Quantity: 2	Edit
Type: Float CD AB ~	Qpen
	Save

- 5. Slowly immerse the sensor into the suspended matter standard solution;
- 6. Wait for the value to stabilize, and record the measured value;
- Calculate the correction factor; the correction factor is equal to the value of the standard solution divided by the value measured in step 6. (factor = standard solution value/measured value);
- 8. Select "16" in the menu bar, enter "06" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "factor value" (The factor value is calculated in step 7), click "OK", and then click "Send".

Assume that the calculated factor value calculated in step 7 is 0.93, as shown in the figure below:

16: Write	Multiple Registers		×
Slave ID:	1	006 = 0.93	Send
Address:	06		Cancel
Quantity:	2		Edit
Туре:	Float CD AB v		Open
			Save

Tx = 6469: Err = 2204: ID = 1: F = 03: SR = 1000ms	

	Alias	00000	Alias	00010	Alias	00020
0		0		0	手动刮刷指令	0
1		1 <u></u> -	刮刷时间	1	自动刮刷指令	0
2	悬浮物/污泥浓度值	5667.26	响应时间	1		0
3			悬浮物/污泥浓度	2		0
4		0	探头湿度	0		0
5				1		0
6	悬浮物/污泥浓度因子	0.93	探头波特率	9600		0
7			探头从机地址	1		0
8		0	序列号1	221		0
9			序列号2	8329		0

5.2 Four-point calibration

Suspended solids (sludge concentration) four-point calibration requires the use of suspended solids standard solution, **the specific steps are as follows:**

1. Connect the sensor to the Modbus software;

2. Prepare the four suspended substance standard liquids required for four-point calibration, generally recommended as zero point, 0.25 times the range point, 0.5 times the range point and full scale point, and wipe the sensor;

3. Refer to step 3-4 of 5.1, set the calibration method to factor, and the value of the factor is 1; in this way, the values of each standard solution are measured by the actual value of each standard solution.

4. Slowly immerse the sensor into the first suspended matter standard solution, record the value of the first standard solution (the target value of the standard solution) and the measured value of the first standard solution (the measured value is the actual value), clean and wipe clean;

Slowly immerse the sensor into the second standard solution of suspended matter, record the value of the second standard solution and the measured value of the second standard solution, clean and wipe it clean;

Slowly immerse the sensor into the third standard solution of suspended matter, record the value of the third standard solution and the measured value of the third standard solution, clean and wipe it clean;

Slowly immerse the sensor into the fourth standard solution of suspended matter, record the value of the fourth standard solution and the measured value of the fourth standard solution, clean and wipe it clean; (divide the target value by the measured value <2 during this process)

5. Select "06" in the menu bar and enter "27" for Address and "3" for Value in the dialog box that appears, and then click "Send", as shown in the figure below;

<u>S</u> end
Cancel
]
onse ok''
r

6.Select "06" in the menu bar, and enter "28" for Address and "1" for Value in the dialog box

that appears, and then click "Send", as shown in the figure below;

Slave ID:	1	<u>S</u> end
Address:	28	Cance
Value:	1]
Result		
Response	ok	
Close d	ialog on ''Respo	onse ok''
Use Funct	ion	
🖲 06: Wri	te single registe	r
<u> </u>	1. I.	

7. Select "16" in the menu bar, enter "20" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "1st Standard solution value", click "OK", and then click "Send", as shown in the figure below;

16: Write	Multiple Registers			×
Slave ID:	1	020 = 2.17		Send
Address:	20		C	ancel
Quantity:	2			Edit
Type:	Float CD AB	~	C)pen
			S	Save

8. Select "16" in the menu bar, enter "22" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "1st Measured value of standard solution", click "OK", and then click "Send", as shown in the figure below;

16: Write	Multiple Registers		×
Slave ID:	1	022 = 2.67	Send
Address:	22		Cancel
Quantity:	2		Edit
Туре:	Float CD AB	~	Open
			Save

9. Select "06" in the menu bar, and enter "28" for Address and "2" for Value in the dialog box that appears, and then click "Send", as shown in the figure below;

Slave ID:	1	<u>S</u> end
Address:	28] Cancel
Value:	2]
Result Response	ok	
🗌 Close d	alog on ''Respo	nse ok''
Use Funct	on	
🖲 06: Writ	e single register	

10. Select "16" in the menu bar, enter "20" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "2nd Standard solution value", click "OK", and then click "Send", as shown in the figure below;

16: Write	Multiple Registers		×
Slave ID:	1	020 = 443	<u>S</u> end
Address:	20		<u>C</u> ancel
Quantity:	2		<u>E</u> dit
Туре:	Float CD AB 🛛 🗸		<u>O</u> pen
			S <u>a</u> ve

11. Select "16" in the menu bar, enter "22" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "2nd Measured value of standard solution", click "OK", and then click "Send", as shown in the figure below;

16: Write	Multiple Registers		×
Slave ID:	1	022 = 531.497	<u>S</u> end
Address:	22		Cancel
Quantity:	2		<u>E</u> dit
Type:	Float CD AB	~	<u>O</u> pen
			Save

12. Select "06" in the menu bar, and enter "28" for Address and "3" for Value in the dialog box that appears, and then click "Send", as shown in the figure below;

Slave ID:	1	<u>S</u> end
Address:	28	Cancel
Value:	3]
Result Response	ok ialog on ''Respo	onse ok''
Lise Funct	ion	
06: Writ	e single register	r
0.000		

13.Select "16" in the menu bar, enter "20" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "3rd Standard solution value", click "OK", and then click "Send", as shown in the figure below;

Multiple Registers		
1	020 = 2140	Send
20		Cancel
2		Edit
Float CD AB	~	Open
		Save
	Multiple Registers 1 20 2 Float CD AB	Multiple Registers 1 020 = 2140 2 2 Float CD AB

14.Select "16" in the menu bar, enter "22" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "3rd Measured value of standard solution", click "OK", and then click "Send", as shown in the figure below;

16: Write	Multiple Registe	ſS	×
Slave ID:	1	022 = 2337.05	Send
Address:	22		Cancel
Quantity:	2		Edit
Туре:	Float CD AB	~	<u>O</u> pen
			Save

15.Select "06" in the menu bar and enter "28" for Address and "4" for Value in the dialog box that appears, and then click "Send", as shown in the figure below;

Slave ID:	1	<u>S</u> end
Address:	28	Cancel
Value:	4]
Result Response	ok ialog on ''Respo	nse ok''
Use Funct	ion	
🔘 06: Wri	te single register	

16.Select "16" in the menu bar, enter "20" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "4th Standard solution value", click "OK", and then click "Send", as shown in the figure below;

TO. WITTE	Multiple Registers			~
Slave ID:	1		020 = 6227	<u>S</u> end
Address:	20			<u>C</u> ancel
Quantity:	2			<u>E</u> dit
Туре:	Float CD AB	~		<u>O</u> pen
				S <u>a</u> ve

17.Select "16" in the menu bar, enter "22" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "4th Measured value of standard solution", click "OK", and then click "Send", as shown in the figure below;

16: Write	Multiple Registers		×
Slave ID:	1	022 = 5613.11	<u>S</u> end
Address:	22		<u>C</u> ancel
Quantity:	2		<u>E</u> dit
Туре:	Float CD AB ~		<u>O</u> pen
			S <u>a</u> ve

18.Calibration is complete, remove the sensor to clean and wipe clean.

5.3 Curve Calibration

The calibration of suspended solids (sludge concentration) requires the use of turbidity standard solution to correct the calibration curve. **The specific steps are as follows:** (If you enter the curve calibration, you must calibrate and perform the calibration action to step 11, otherwise the sensor will always be in the calibration mode, and choose to power off and restart or perform step 12 when the normal measurement cannot be performed.)

- 1. Connect the sensor to the Modbus software;
- 2. After setting the parameters according to chapter 4.2, select the second column, right click and select "Format", click "Float CD AB", and wipe the sensor;
- 3. Select "16" in the menu bar, enter "06" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter "1" for Value, Click "OK", and then click "Send", as shown in the figure below;

ave ID:	006 = 1	Send
ddress:	06	Cancel
uantity:	2	Edit
Гуре:	Float CD AB ~	Open
		Save

 4_{\times} Select "06" in the menu bar, and enter "13" for Address and "1" for Value in the dialog box

that appears, and click "Send" to change the probe type to turbidity, as shown in the figure below;

Slave ID:	1	<u>S</u> end
Address:	13	Cancel
value:	1	
Result Response	ok ialog on "Respor	ise ok"
Use Functi	on	
Use Functi	on te single register	

	Alias	00000	Alias	00010	Alias	00020
0	浊度值	0.26847		0	手动刮刷指令	0
1			刮刷时间	1		
2		0	响应时间	1		0
3			浊度	1		
4	浊度因子	1	探头湿度	0		0
5				1		
6		0	探头波特率	9600		0
7			探头从机地址	1		
8	浊度偏差值	0	序列号1	221		0
9			序列号2	8329		

5. Select "16" in the menu bar, enter "04" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, enter "1" for Value, and click " OK", and then click "Send" to start the calibration.

16: Write	Multiple Registers		×
Slave ID:	1	004 = 1	Send
Address:	04		Cancel
Quantity:	2		Edit
Туре:	Float CD AB	~	Open
			Save

6. Enter the calibration mode, select "06" in the menu bar, and enter "59" for Address and
"66" for Value in the dialog box that appears, and click "Send";

ddress:	59	1
	00	Cancel
alue:	66	
Response	ok alog on "Respo	onse ok"

- 7、Put the sensor in distilled water. After a while, select "06" in the menu bar, and input "59" for Address and "1" for Value in the dialog box;;
- 8、Wait for the value of address 22 to be less than 17 and stabilize for a period of time, as shown in the box in the figure below, select "06" in the menu bar, enter "59" for Address and "2" for Value in the dialog box, and click " Send", close the dialog box;

Write Sing	e Register	0
Slave ID:	1	Send
Address:	59	Cancel
Value:	2	
Result N/A		
Close d	ialog on "Respons	se ok"
Use Functi	on	
• 06: Writ	e single register	
16 Writ	e multinle register	9

	Alias	00000	Alias	00010	Alias	00020
0	浊度值	0		0	手动刮刷指令	<mark>34</mark> 3.043
1			刮刷时间	1		
2		0	响应时间	1		8.48925
3			浊度	1		
4	浊度因子	1	探头湿度	0		0
5				1		
6		0	探头波特率	9600		0
7			探头从机地址	1		
8	浊度偏差值	0	序列号1	221		0
9			序列号2	8329		

9、Select "16" in the menu bar, enter "30" for Address and "2" for Quantity in the dialog box that appears, change Type to "Float CD AB", double-click the pop-up value on the right, and enter Value as "known standard solution value (500-1000NTU)", click "OK", and then click "Send";

16: Write	Multiple Registers		×
Slave ID:	1	030 = 631	Send
Address:	30		Cancel
Quantity:	2		Edit
Туре:	Float CD AB	~	<u>O</u> pen
			Save

10、 Put the sensor into the standard solution, select "06" in the menu bar, enter "59" for Address and "3" for Value in the dialog box that appears, and click "Send". After a period of time, wait until the turbidity in the figure below The value is close to and stable with the input value. In the "06" dialog box of the menu bar, enter "59" for Address, change the Value to "4", and click "Send" to complete the calibration;

Vrite Singl	e Register	
Slave ID:	1	Send
Address:	59	Cancel
value:	4	
Result N/A	alog on "Respons	se ok"
Use Functio	on	

	Alias	00000	Alias	00010	Alias	00020
0	浊度值	631.394		0	手动刮刷指令	0
1			刮刷时间	1		
2		0	响应时间	1		0
3			浊度	1		
4	浊度因子	1	探头湿度	0		0
5				1		
6		0	探头波特率	9600		0
7			探头从机地址	1		
8	浊度偏差值	0	序列号1	221		0
9			序列号2	8329		

11、After the calibration is completed, select "06" in the menu bar, enter "13" for Address and"2" for Value in the dialog box that appears, click "Send", and the probe type changes to suspended solids/sludge concentration.

write singi	e Register	~
Slave ID:	1	<u>S</u> end
Address:	13	Cancel
Value:	2	
Result Response	ok	
Close d	ialog on "Respons	se ok"
Use Function	on	
• 06: Writ	e single register	
0 16: Writ	e multiple register	S

12、 If the customer wants to quit the calibration in the middle of the calibration or for other reasons, select "06" in the menu bar and enter "59" for Address and "33" for Value in the dialog box that appears.

Slave ID:	1	<u>S</u> end
Address:	59	Cancel
Value:	33	
Result Response	ok ialog on "Respons	se ok"
Use Functi	on	

Note: If the measured value of curve calibration is inaccurate, it is recommended to use factor calibration to calibrate again.

Chapter 6 Communication Protocol

The sensor is equipped with MODBUS RS485 communication function, please refer to 3.2

of this manual for communication wiring. The specific MODBUS-RTU table is as follows.

MODBUS-RTU			
Baud rate	4800/9600/19200/38400		
Data bit	8 bits		
Parity	None		
Stop bit	1 bit		

Register name	Address location	Read/ write	Data type	Registers Number	Illustrate
Suspended					
solids/sludge	2	OR	Float	2	0-Range
concentration value					
Suspended					
solids/sludge	6	RW	Float	2	0.1-10
concentration factor					
Wining time	11	OR	Int	1	Send interval time ((1-10080
					unit: min)
Response time	12	RW	Int	1	1-60s
Suspended					This place is 2 if it is not 2 it
solids/sludge	13	RW	Int	1	
concentration					should be changed to z
					It is recommended to be less
Probo humidity		1	than 10 (if it is greater than 10, it		
	14			indicates that the sensor may	
					have entered water)

Probe baud rate		R/W	Int	1	W R		
					0 represents 4800 4800		
	16				1 represents 9600 9600		
					2 represents 19200 19200		
					3 represents 38400 38400		
Probe slave address	17	RW	Int	1	1-254		
O anial mumbers 4	40		1		The first 4 digits of the serial		
Serial number 1	18	UR			number		
	40		1		The last 4 digits of the serial		
Serial number 2	19	UR			number		
Manual scraping	20	14/	Int	1	Cond 66		
command	20	vv			Send oo		
Auto Wine Command	24	W Int 1	1	Send interval time ((1-10080			
Auto wipe Command	21		Int	1	unit: min)		
		Calil	oration me	thod			
Factor correction (using suspension standard)							
	07		Int 1	Send 1 (1 means sensor enable			
First step	27	VV		I	factor correction mode)		
Four-poin	t calibratio	n (usinę	g suspend	ed matter st	andard solution)		
					Send 3 (3 means the sensor		
First step	27	w	Int	1	enables the four-point		
					calibration mode)		
First point correction							
First step	28	w	Int	1	Send 1 (1 represents point 1)		
The second step is to			_				
set the target value	20	VV	Float	2	Send target value		
The third step is to set	22						
the actual value	22	W	Float	2	send actual value		
Second point correction							

First step	28	W	Int	1	Send 2 (2 stands for point 2)		
The second step is to set the target value	20	w	Float	2	Send target value		
The third step is to set the actual value	22	w	Float	2	send actual value		
Third point correction							
First step	28	W	Int	1	Send 3 (3 stands for point 3)		
The second step is to set the target value	20	w	Float	2	Send target value		
The third step is to set the actual value	22	w	Float	2	send actual value		
Fourth point correction							
First step	28	W	Int	1	Send 4 (4 for point 4)		
The second step is to set the target value	20	w	Float	2	Send target value		
The third step is to set the actual value	22	w	Float	2	send actual value		
	Curve C	alibratior	n (Using Tu	bidity Standa	rds)		
First step	13	w	Int	1	Send 1 (1 means switch to turbidity sensor state, ready to calibrate)		
Second step	59	W	Int	1	Send 66 (66 means enter the curve calibration mode)		
Third step	59	W	Int	1	Send 1 (1 means ready to calibrate 0 point)		
The fourth step	59	w	Int	1	Send 2 (2 means calibration 0 point)		

The fifth step	30	w	Float	2	Write the standard solution value of the second point (500-1000NTU)
Step six	59	w	Int	1	Send 3 (3 stands for ready to calibrate point 2)
Step seven	59	w	Int	1	Send 4 (4 stands for calibration point 2)
Eighth step	13	w	Int	2	Send 2 (2 means switch to suspended solids/sludge concentration sensor state and enter normal measurement)
Cancel in process	59	w	Int	1	Send 33 33 to exit the calibration mode

485 analysis

1、Read the suspended solids/sludge concentration value

Register name	Address location	Read/ write	Data type	Registers Number	Illustrate
Suspended					
solids/sludge	2	OR	Float	2	0-Range
concentration value					

Send command: 01 03 00 02 00 02 65 CB

Device returns: 01 03 04 00 00 40 E0 CA 7B

Send command analysis:

01: device address 01

03: Function code 03 for reading register content

00 02: The starting register address for reading is 02

00 02: read 2 registers

65 CB: CRC16 check code

Device returns parsing:

01: device address 01

03: Function code 03 for reading register content

04: The length of the returned data is 4 bytes

00 00 40 E0: The read suspended solids/sludge concentration value is 7.00 (use IEEE 754

to analyze 40 E0 00 00)

CA 7B: CRC16 check code

2、Read the wipe time

Register name	Address location	Read /write	Data type	Registers Number	Illustrate
Wiping time	11	OR	Int	1	Send interval time ((1-10080 unit: min)

Send command: 01 03 00 0B 00 01 F5 C8

Device returns: 01 03 02 00 0A B8 44

Send command analysis:

01: device address 01

03: Function code 03 for reading register content

00 0B: The starting register address for reading is 11

00 01: read 1 register

F5 C8: CRC16 check code

Device returns parsing:

01: device address 01

03: Function code 03 for reading register content

02: The returned data length is 2 bytes

00 0A: The scraping time to read is 10 (minutes)

B8 44: CRC16 check code

3、Set up manual wipe commands

Register name	Address location	Read /write	Data type	Registers Number	Illustrate
Manual wipe	20	۱۸/	Int	1	Send 66
command	20	V V			Send bo

Send command: 01 06 00 14 00 42 49 FF

Device returns: 01 06 00 14 00 42 49 FF

Send command analysis:

01: device address 01

- 06: Function code 06 for writing register contents
- 00 14: The register address for writing data is 20
- 00 42: write data content is 66
- 49 FF: CRC16 check code

Device returns parsing:

- 01: device address 01
- 06: Function code 06 for writing register contents
- 00 14: The register address of the return write data is 20
- 00 42: Return and modify the data content to 66
- 49 FF: CRC16 check code

4、Set Suspended Solids/Sludge Concentration Factor

Register name	Address location	Read /write	Data type	Registers Number	Illustrate
Suspended					
solids/sludge	6	RW	Float	2	0.1-10
concentration factor					

Send command: 01 10 00 06 00 02 04 00 00 3F 80 63 D5

Device returns: 01 10 00 06 00 02 A1 C9

Send command analysis:

01: device address 01

10: Function code 16 for writing register contents

00 06: The starting register address of writing data is 06

00 02: Write the data of 2 registers

04: data length 4 bytes

00 00 3F 80: The written suspended solids/sludge concentration factor is: 1.00 (use IEEE

754 to analyze 3F 80 00 00)

63 D5: CRC16 check code

Device returns parsing:

01: device address 01

10: Function code 16 for writing register contents

00 06: Return the start register address of write data as 06

00 02: return 2 registers

A1 C9: CRC16 check code

Chapter 7 Maintenance

In order to obtain the best measurement results, regular maintenance and maintenance are required. Maintenance and maintenance mainly include sensor cleaning, checking whether the sensor is damaged, etc. In maintenance and testing, you can also view the relevant status of the sensor.

7.1 Sensor cleaning

The two lenses on the sensor need to be cleaned, please perform cleaning and maintenance regularly according to the actual usage to ensure the accuracy of the measurement. When cleaning, rinse with water first, then wipe with detergent and a rag to remove stubborn stains.

7.2 Sensor damage inspection

Check the appearance of the sensor to see if it is damaged. If there is any damage, please contact the after-sales service center for replacement in time to prevent the sensor from being damaged due to water ingress. Note: It is recommended to replace the seal ring once a year.

7.3 Sensor wiper replacement

For sensors with scrapers, it is recommended to replace the rubber scrapers once a quarter.

The specific steps are as follows:

SUS316L/Titanium alloy material

- 1. The position of the scraper is shown in the left figure;
- 2. Remove the rubber sheet on the scraper;
- 3. Then apply lubricating oil on the bracket;
- 4. Insert a new rubber sheet.

Chapter 8 Special Instructions

The optional self-cleaning wiper is driven by a motor. Do not turn it manually to avoid damage to the internal motor gear. Failure/damage caused by manually turning the wiper is not covered by the warranty!